Transpiler Plugins and Utils
IQM Transpiler
- class iqm.iqm_transpiler.IQMTranspiler(use_nnizer=True, use_remap=False, nnizer_parameters=None, lazy_synthesis_parameters=None, transpiler_method='PRX', decomposition_type='ZXZ', move_rz_to_end=True)
Bases:
AbstractPlugin
Plugin used to perform transpilations of arbitrary input circuits.
- Parameters
use_nnizer (Optional[bool]) – Choose between Nnizer (True) and LazySynthesis (False) as the topology adaption method, defaults to True
use_remap (Optional[bool]) – If set to true, the used qubits of each circuit will be remapped onto an initial segment of integers. Unused qubits are removed from the circuit, defaults to False
nnizer_parameters (Optional[dict]) – Set parameters for the Nnizer such as the specific method. Default: {“method”: “atos”}
lazy_synthesis_parameters (Optional[dict]) – Set parameters for lazy synthesis such as the search depth. Default: {“depth”: 2}
transpiler_method (Optional[str]) – Choose between the PRX, VZ and NISQ transpiler, defaults to ‘PRX’
decomposition_type (Optional[str]) – Choose a decomposition type for the KAK compression, defaults to ‘ZXZ’ (VZ transpiler only)
move_rz_to_end (Optional[str]) – Choose whether RZ gates should be collected at the end (default) or beginning of the circuit (VZ transpiler only)
- Example:
The transpiler plugin can be used to compile a given circuit into a circuit with a desired gateset and to display the transpiled circuit.
from qat.core import Batch from qat.lang import Program from qat.lang.AQASM import H, CNOT from qat.qpus import IQM5SimQPU from qat.plugins import IQMTranspiler quantum_program = Program() qubits = quantum_program.qalloc(2) quantum_program.apply(H, qubits[0]) quantum_program.apply(CNOT, qubits[0], qubits[1]) circuit = quantum_program.to_circ() job = circuit.to_job() qpu = IQM5SimQPU() hardware_specs = qpu.get_specs() transpiler = IQMTranspiler() transpiled_batch = transpiler.compile(Batch(jobs=[job]), hardware_specs) transpiled_job = transpiled_batch.jobs[0] transpiled_circuit = transpiled_job.circuit transpiled_circuit.display()
- compile(batch, specs)
- Parameters
batch (Batch) – A batch of jobs
specs (HardwareSpecs) – Hardware specs of the QPU
- Return type
Batch
- post_process(batch_result)
- Parameters
batch_result (BatchResult) – A BatchResult object
- Returns
The postprocessed BatchResult
- Return type
BatchResult
IQM Observable Splitter
- class iqm.iqm_observable_splitter.IQMObservableSplitter(splitting_method='coloring')
Bases:
AbstractPlugin
Plugin used to execute arbitrary observable jobs on the IQM QPUs.
- Parameters
splitting_method – Specify the splitting algorithm to be used. Defaults to ‘coloring’
- Example:
The IQM Observable Splitter can be used to transform an arbitrary observable job to a job that is executable within the restriction given by the IQM QPU.
from qat.lang import Program from qat.lang.AQASM import CSIGN from qat.core import Observable, Term from qat.iqm import PRX from qat.qpus import IQM5SimQPU from qat.plugins import IQMObservableSplitter import numpy as np quantum_program = Program() qubits = quantum_program.qalloc(3) quantum_program.apply(PRX(np.pi/2., -np.pi/2.), qubits[0]) quantum_program.apply(PRX(np.pi/2., -np.pi/2.), qubits[2]) quantum_program.apply(CSIGN, qubits[0], qubits[2]) quantum_program.apply(PRX(np.pi/2., -3.*np.pi/2.), qubits[2]) observable_pauli = Observable(3, pauli_terms=[Term(1., "XXX", [0, 1, 2])]) circuit = quantum_program.to_circ() job = circuit.to_job(observable=observable_pauli) stack = IQMObservableSplitter() | IQM5SimQPU() result = stack.submit(job)
- compile(batch, specs)
Compile a batch
- Parameters
batch (Batch) – A batch of jobs
specs (HardwareSpecs) – Hardware specs of the QPU
- Return type
Batch
- post_process(batch_result)
Post process a result
Utils
- iqm.utils.compare_results(result_a, result_b, rtol=1, atol=1e-08)
Compares the state probabilities of two different runs.
- Parameters
result_a (Result) – Result of the first run
result_b (Result) – Result of the second run
- Return type
bool
- iqm.utils.create_random_circuit(num_gates, num_qubits, use_three_qubit_gates=True)
Creates a random circuit with all available one-, two-, and three-qubit gates within Qaptiva.
- Parameters
num_gates (int) – The total number of gates that should be included in the random circuit.
num_qubits (int) – The total number of qubits that should be included in the random circuit.
quantum_program – The quantum program that should be instantiated.
use_three_qubit_gates (Optional[bool]) – Use the Toffoli gate as the three-qubit gate within the random circuit, defaults to True
- Return type
Program